Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters










Publication year range
1.
Front Psychol ; 15: 1371014, 2024.
Article in English | MEDLINE | ID: mdl-38633874

ABSTRACT

This study investigated the impact of transcutaneous electrical acupoint stimulation (TEAS) at Neiguan acupoint (PC6) on the physiological and behavioral responses of participants exposed in virtual height. 40 participants were included in the study and were randomly assigned to either a control group or an intervention group. Participants had an immersive experience with a VR interactive platform that provided somatosensory interaction in height stimulation scenes. Psychological scores, behavioral and cognitive performance, and physiological responses were recorded and analyzed. The results indicated that the intervention group had significantly lower fear scores compared to the control group. Analysis of heart rate variability revealed that the intervention group exhibited improved heart rate variability, indicating enhanced cardiovascular function and emotion regulation. The behavioral and cognitive results demonstrated that the intervention group exhibited higher left eye openness, faster reaction times, and greater movement distance, suggesting enhanced attentional focus, cognitive processing, and reduced avoidance behaviors. These findings suggest that TEAS at PC6 can effectively reduce fear and improve the regulation of physiological and behavioral responses to negative emotional stimuli.

2.
BMC Nurs ; 23(1): 224, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38561758

ABSTRACT

BACKGROUND: Mental health problems are critical and common in medical staff working in Intensive Care Units (ICU) even at the late stage of COVID-19, particularly for nurses. There is little research to explore the inner relationships between common syndromes, such as depression and burnout. Network analysis (NA) was a novel approach to quantified the correlations between mental variables from the perspective of mathematics. This study was to investigate the interactions between burnout and depression symptoms through NA among ICU nurses. METHOD: A cross-sectional study with a total of 616 Chinese nurses in ICU were carried out by convenience sampling from December 19, 2022 to January19, 2023 via online survey. Burnout symptoms were measured by Maslach Burnout Inventory-General Survey (MBI-GS) (Chinese version), and depressive symptoms were assessed by the 9-item Patient Health Questionnaire (PHQ-9). NA was applied to build interactions between burnout and depression symptoms. We identified central and bridge symptoms by R package qgraph in the network model. R package bootnet was used to examined the stability of network structure. RESULTS: The prevalence of burnout and depressive symptoms were 48.2% and 64.1%, respectively. Within depression-burnout network, PHQ4(Fatigue)-MBI2(Used up) and PHQ4(Fatigue)-MBI5(Breakdown) showed stronger associations. MBI2(Used up) had the strongest expected influence central symptoms, followed by MBI4(Stressed) and MBI7 (Less enthusiastic). For bridge symptoms. PHQ4(Fatigue), MBI5(Breakdown) and MBI2(Used up) weighed highest. Both correlation stability coefficients of central and bridge symptoms in the network structure were 0.68, showing a high excellent level of stability. CONCLUSION: The symptom of PHQ4(Fatigue) was the bridge to connect the emotion exhaustion and depression. Targeting this symptom will be effective to detect mental disorders and relieve mental syndromes of ICU nurses at the late stage of COVID-19 pandemic.

3.
Front Physiol ; 15: 1340061, 2024.
Article in English | MEDLINE | ID: mdl-38440348

ABSTRACT

Backgrounds: The validity of heart rate variability (HRV) has been substantiated in mental workload assessments. However, cognitive tasks often coincide with physical exertion in practical mental work, but their synergic effects on HRV remains insufficiently established. The study aims were to investigate the combined effects of cognitive and physical load on autonomic nerve functions. Methods: Thirty-five healthy male subjects (aged 23.5 ± 3.3 years) were eligible and enrolled in the study. The subjects engaged in n-back cognitive tasks (1-back, 2-back, and 3-back) under three distinct physical conditions, involving isotonic contraction of the left upper limb with loads of 0 kg, 3 kg, and 5 kg. Electrocardiogram signals and cognitive task performance were recorded throughout the tasks, and post-task assessment of subjective experiences were conducted using the NASA-TLX scale. Results: The execution of n-back tasks resulted in enhanced perceptions of task-load feelings and increased reaction times among subjects, accompanied by a decline in the accuracy rate (p < 0.05). These effects were synchronously intensified by the imposition of physical load. Comparative analysis with a no-physical-load scenario revealed significant alterations in the HRV of the subjects during the cognitive task under moderate and high physical conditions. The main features were a decreased power of the high frequency component (p < 0.05) and an increased low frequency component (p < 0.05), signifying an elevation in sympathetic activity. This physiological response manifested similarly at both moderate and high physical levels. In addition, a discernible linear correlation was observed between HRV and task-load feelings, as well as task performance under the influence of physical load (p < 0.05). Conclusion: HRV can serve as a viable indicator for assessing mental workload in the context of physical activities, making it suitable for real-world mental work scenarios.

4.
Front Hum Neurosci ; 18: 1338765, 2024.
Article in English | MEDLINE | ID: mdl-38415279

ABSTRACT

Previous neuroimaging studies have revealed abnormal brain networks in patients with major depressive disorder (MDD) in emotional processing. While any cognitive task consists of a series of stages, little is yet known about the topology of functional brain networks in MDD for these stages during emotional face recognition. To address this problem, electroencephalography (EEG)-based functional brain networks of MDD patients at different stages of facial information processing were investigated in this study. First, EEG signals were collected from 16 patients with MDD and 18 age-, gender-, and education-matched normal subjects when performing an emotional face recognition task. Second, the global field power (GFP) method was employed to divide group-averaged event-related potentials into different stages. Third, using the phase transfer entropy (PTE) approach, the brain networks of MDD patients and normal individuals were constructed for each stage in negative and positive face processing, respectively. Finally, we compared the topological properties of brain networks of each stage between the two groups using graph theory approaches. The results showed that the analyzed three stages of emotional face processing corresponded to specific neurophysiological phases, namely, visual perception, face recognition, and emotional decision-making. It was also demonstrated that depressed patients showed abnormally decreased characteristic path length at the visual perception stage of negative face recognition and normalized characteristic path length in the stage of emotional decision-making during positive face processing compared to healthy subjects. Furthermore, while both the MDD and normal groups' brain networks were found to exhibit small-world network characteristics, the brain network of patients with depression tended to be randomized. Moreover, for patients with MDD, the centro-parietal region may lose its status as a hub in the process of facial expression identification. Together, our findings suggested that altered emotional function in MDD patients might be associated with disruptions in the topological organization of functional brain networks during emotional face recognition, which further deepened our understanding of the emotion processing dysfunction underlying MDD.

5.
Ergonomics ; 67(4): 515-525, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37365918

ABSTRACT

To investigate whether high cognitive task load (CTL) for aircraft pilots can be identified by analysing heart-rate variability, electrocardiograms were recorded while cadet pilots (n = 68) performed the plane tracking, anti-gravity pedalling, and reaction tasks during simulated flight missions. Data for standard electrocardiogram parameters were extracted from the R-R-interval series. In the research phase, low frequency power (LF), high frequency power (HF), normalised HF, and LF/HF differed significantly between high and low CTL conditions (p < .05 for all). A principal component analysis identified three components contributing 90.62% of cumulative heart-rate variance. These principal components were incorporated into a composite index. Validation in a separate group of cadet pilots (n = 139) under similar conditions showed that the index value significantly increased with increasing CTL (p < .05). The heart-rate variability index can be used to objectively identify high CTL flight conditions.Practitioner summary: We used principal component analysis of electrocardiogram data to construct a composite index for identifying high cognitive task load in pilots during simulated flight. We validated the index in a separate group of pilots under similar conditions. The index can be used to improve cadet training and flight safety.Abbreviations: ANOVA: a one-way analysis of variance; AP: anti-gravity pedaling task; CTL: cognitive task load; ECG: electrocardiograms; HR: heart rate; HRV: heart-rate variability; HRVI: heart-rate variability index; PT: plane-tracking task; RMSSD: root-mean square of differences between consecutive R-R intervals; RT: reaction task; SDNN: standard deviation of R-R intervals; HF: high frequency power; HFnu: normalized HF; LF: low frequency power; LFnu: normalized LF; PCA: principal component analysis.


Subject(s)
Cognition , Electrocardiography , Humans , Heart Rate/physiology , Principal Component Analysis
6.
Neuro Endocrinol Lett ; 44(8): 491-499, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38131172

ABSTRACT

BACKGROUND: Standard low-resolution electromagnetic tomography (sLORETA) was used to accurately detect EEG changes in mental fatigue of air traffic controllers (ATCo) under a simulated air traffic control (ATC) task. We explored the changes in standard current density, activated cortical intensity, and brain source location. METHODS: The participants were instructed to use the tower flight command simulation training system for three hours of uninterrupted ATC task. The 3-hour EEG signal was divided into four stages: task start, 1st hour, 2nd hour, and task end. Each stage was preprocessed for 3 minutes to explore the EEG changes and then processed by sLORETA in a statistical non-parametric mapping analysis. RESULTS: The current density distribution of δ and α oscillations differed significantly during the four tasks, while θ, ß and γ oscillations did not. Changes in δ oscillations of the brain during mental fatigue were detected mainly in the postcentral gyrus (BA2 and BA3), precentral gyrus (BA4 and BA6), inferior temporal gyrus (BA20), and superior temporal gyrus (BA38). The α oscillations were found mainly decreased in the postcentral gyrus (BA2) and inferior parietal lobule (BA40) when the task was in progress compared with the end of the task. CONCLUSION: The superior temporal gyrus and somatosensory cortex were the main activated cortical regions during the simulated ATC task. The α and δ oscillations showed contrasting activity during simulated ATC task, which might reflect the release of task-relevant brain's areas from inhibition and enhance the neural activity.


Subject(s)
Brain , Electroencephalography , Humans , Electroencephalography/methods , Brain/diagnostic imaging , Tomography/methods , Brain Mapping , Electromagnetic Phenomena , Mental Fatigue , Magnetic Resonance Imaging
7.
Huan Jing Ke Xue ; 44(6): 3108-3116, 2023 Jun 08.
Article in Chinese | MEDLINE | ID: mdl-37309930

ABSTRACT

Both particulate matter with aerodynamics of less than 2.5 (PM2.5) and ozone are the two main air pollutants in China, which seriously endanger human health. To estimate the adverse impacts of PM2.5 and ozone on human health during the implementation of air pollution prevention and control actions in Chengdu, both the generalized additive model and the nonlinear distribution lag model of epidemiology were adopted to explore the exposure-response relationship coefficients ß of daily ozone 8h maximum concentration average (O3-8h), as well as that of PM2.5 on disease deaths in Chengdu from 2014 to 2016. On this basis, the environmental risk model and environmental value assessment model were both adopted to evaluate the health effects and health benefits in Chengdu from 2016 to 2020, respectively, with the assumption that PM2.5 and O3-8h concentration were reduced to specified air pollution control limits (35 µg·m-3 and 70 µg·m-3, respectively). The results showed 1 the annual concentration of PM2.5 presented gradually decreasing trends in Chengdu from 2016 to 2020. Specifically, ρ(PM2.5) from 63 µg·m-3 in 2016 decreased to 40.92 µg·m-3 in 2020. The average annual decline rate was approximately 9.8%. In contrast, the annual concentration of O3-8h from 155 µg·m-3 in 2016 increased to 169 µg·m-3 in 2020, and the increasing rate was approximately 2.4%. 2 Both PM2.5 and O3-8h had lag effects on three types of disease deaths. Under the maximum lag effect, the corresponding exposure-response relationship coefficients ß of PM2.5were 0.0003600, 0.0005001, and 0.0009237 for all-cause, cardiovascular, and respiratory premature deaths, respectively, whereas the corresponding ß of O3-8h were 0.0003103, 0.0006726, and 0.0007002, respectively. 3 If ρ(PM2.5) was reduced to the national secondary standard limit (35 µg·m-3), the corresponding number of health beneficiaries and economic benefits declined yearly. Specifically, the health beneficiary number of all-cause, cardiovascular, and respiratory disease deaths were reduced from 1128, 416, and 328 in 2016 to 229, 96, and 54 in 2020, respectively. There were a total number of 3314 avoidable premature deaths for all-cause diseases during the five years, resulting in a total health economic benefit of 7.66 billion yuan. 4 If we assume that ρ(O3-8h) was reduced to the concentration limit specified by the World Health Organization (70 µg·m-3), the corresponding number of health beneficiaries and economic benefits were increasing yearly. Specifically, the health beneficiaries' numbers of all-cause, cardiovascular, and respiratory disease deaths rose from 1919, 779, and 606 in 2016 to 2429, 1157, and 635 in 2020, respectively. The annual average growth rates of avoidable all-cause and cardiovascular mortality were 6.85% and 10.72%, respectively, which was higher than the annual average rise rate of ρ(O3-8h). There were 10790 total avoidable deaths from all-cause diseases during the five years, resulting in a total health economic benefit of 26.62 billion yuan. These findings indicate that PM2.5 pollution in Chengdu had been well controlled, whereas O3 pollution had become more severe and had become another key air pollutant threatening human health. Therefore, the synchronous control of PM2.5 and ozone should be implemented in the future.


Subject(s)
Air Pollutants , Air Pollution , Ozone , Humans , Environmental Pollution , China , Particulate Matter
8.
Neurosci Lett ; 805: 137225, 2023 05 14.
Article in English | MEDLINE | ID: mdl-37019271

ABSTRACT

The aim of the study is to explore differences in cognitive processing of phylogenetic and ontogenetic stimulus using the electroencephalography (EEG) technology. The researcher chose snakes and guns as representatives of phylogenetic stimulus and ontogenetic stimulus, respectively, and used the Oddball paradigm to present the experimental stimuli and explore the cognitive processing differences between them through time-domain analysis and time-frequency analysis. The results of time-domain analysis showed that snakes elicited larger N1, P2, and P3 amplitudes and a shorter P3 latency than guns and neutral stimuli, and that guns elicited greater P2 and P3 amplitudes than neutral stimuli. The findings of time-frequency analysis showed that the beta-band (320-420 ms, 25-35 Hz) power elicited by snakes was significantly greater than by guns and neutral stimuli, and that the beta-band power elicited by guns was significantly greater than by neutral stimuli. The results indicated that the brain has a cognitive processing advantage for both snakes and guns, which is more obvious for snakes than for guns, and that the brain is more sensitive to snakes.


Subject(s)
Cognition , Electroencephalography , Evoked Potentials, Visual , Firearms , Snakes , Animals , Cognition/physiology , Phylogeny , Reaction Time , Humans , Brain/physiology , Photic Stimulation , Evoked Potentials, Visual/physiology
9.
Front Neurosci ; 16: 910457, 2022.
Article in English | MEDLINE | ID: mdl-36161182

ABSTRACT

A prolonged period of vigilance task will lead to vigilance decrement and a drop in cognitive efficiency. Although transcranial direct current stimulation (tDCS) can be used to improve cognitive performance following vigilance decrement, the findings in this area of study are inconsistent. This study aims to identify the neuroelectrophysiological and behavioral effects of tDCS over the left dorsolateral prefrontal cortex (DLPFC) on executive vigilance under a continuous monotonous condition. We recruited 29 participants who randomly received 30 min active or sham tDCS before the vigilance task (anode electrode at the left DLPFC, cathode electrode at the right supraorbital area). Participants completed four sessions of vigilance task and five sessions of self-report sleepiness, Oddball task, and Go/Nogo task, for a total of about 5 h. EEG was acquired in real-time throughout the experiment. Repeated measures of ANOVA were utilized to analyze the evolution of each metric with task-on-time. The results demonstrated that subjective arousal state, vigilance performance, event-related potentials (ERPs), and EEG power were significantly affected by time on task. Brain stimulation did not significantly affect the evolution of subjective and objective executive vigilance performance, but significantly modulated spontaneous activity in the alpha and beta bands across the entire brain. The continuous enhancement of the prefrontal cortex increased P2 amplitude for the Oddball task, which was associated with the enhancement of the early stage of information processing. P3 amplitude had a temporary enhancement effect, which significantly decreased following a cognitive fatigue. tDCS had a continuous enhancement effect on N2 amplitude for the Go/Nogo task, which was associated with the enhanced inhibition of distracting stimuli. Together, the current data suggest that anodal tDCS over left DLPFC possibly enhances the early stage of relevant information processing and the inhibitory control of distracting stimuli during a continuous and monotonous vigilance task.

10.
Environ Sci Pollut Res Int ; 29(48): 73011-73019, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35618998

ABSTRACT

A multitude of epidemiological studies have demonstrated that both ambient temperatures and air pollution are closely related to health outcomes. However, whether temperature has modification effects on the association between ozone and health outcomes is still debated. In this study, three parallel time-series Poisson generalized additive models (GAMs) were used to examine the effects of modifying ambient temperatures on the association between ozone and mortality (including non-accidental, respiratory, and cardiovascular mortality) in Chengdu, China, from 2014 to 2016. The results confirmed that the ambient high temperatures strongly amplified the adverse effects of ozone on human mortality; specifically, the ozone effects were most pronounced at > 28 °C. Without temperature stratification conditions, a 10-µg/m3 increase in the maximum 8-h average ozone (O3-8hmax) level at lag01 was associated with increases of 0.40% (95% confidence interval [CI] 0.15%, 0.65%), 0.61% (95% CI 0.27%, 0.95%), and 0.69% (95% CI 0.34%, 1.04%) in non-accidental, respiratory, and cardiovascular mortality, respectively. On days during which the temperature exceeded 28 °C, a 10-µg/m3 increase in O3-8hmax led to increases of 2.22% (95% CI 1.21%, 3.23%), 2.67% (95% CI 0.57%, 4.76%), and 4.13% (95% CI 2.34%, 5.92%) in non-accidental, respiratory, and cardiovascular mortality, respectively. Our findings validated that high temperature could further aggravate the health risks of O3-8hmax; thus, mitigating ozone exposure will be brought into the limelight especially under the context of changing climate.


Subject(s)
Air Pollutants , Air Pollution , Cardiovascular Diseases , Ozone , Air Pollutants/analysis , Air Pollution/analysis , China , Humans , Ozone/analysis , Particulate Matter/analysis , Temperature
11.
Geohealth ; 6(3): e2021GH000502, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35317468

ABSTRACT

Coronavirus disease (COVID-19) remains a serious issue, and the role played by meteorological indicators in the process of virus spread has been a topic of academic discussion. Previous studies reached different conclusions due to inconsistent methods, disparate meteorological indicators, and specific time periods or regions. This manuscript is based on seven daily meteorological indicators in the NCEP reanalysis data set and COVID-19 data repository of Johns Hopkins University from 22 January 2020 to 1 June 2021. Results showed that worldwide average temperature and precipitable water (PW) had the strongest correlation (ρ > 0.9, p < 0.001) with the confirmed COVID-19 cases per day from 22 January to 31 August 2020. From 22 January to 31 August 2020, positive correlations were observed between the temperature/PW and confirmed COVID-19 cases/deaths in the northern hemisphere, whereas negative correlations were recorded in the southern hemisphere. From 1 September to 31 December 2020, the opposite results were observed. Correlations were weak throughout the near full year, and weak negative correlations were detected worldwide (|ρ| < 0.4, p ≤ 0.05); the lag time had no obvious effect. As the latitude increased, the temperature and PW of the maximum confirmed COVID-19 cases/deaths per day generally showed a decreasing trend; the 2020-year fitting functions of the response latitude pattern were verified by the 2021 data. Meteorological indicators, although not a decisive factor, may influence the virus spread by affecting the virus survival rates and enthusiasm of human activities. The temperature or PW threshold suitable for the spread of COVID-19 may increase as the latitude decreases.

12.
Aerosp Med Hum Perform ; 93(4): 362-367, 2022 Apr 01.
Article in English | MEDLINE | ID: mdl-35354515

ABSTRACT

OBJECTIVES: This study investigated the effectiveness and identified the cutoff values of the computer-based Farnsworth-Munsell 100-Hue (CFM-100) test for screening color vision deficiencies in the pre-employment examination of civil aviators in China.METHODS: Firstly, subjects were stratified into normal, color weakness, and color blindness with the Ishihara pseudoisochromatic plate test (IPPT) by two ophthalmologists. Then they randomly completed CFM-100 and Farnsworth-Munsell 100-Hue (FM-100) tests. Total error scores (TES) and the time taken for the CFM-100 and FM-100 were analyzed and the cutoff values for the CFM-100 were determined.RESULTS: Of 218 subjects, 159 were normal while 59 were diagnosed with dyschromatopsia. The TES of the CFM-100 were congruent with those of the FM-100 (20.0 ± 18.8 vs. 20.6 ± 17.7, 160.9 ± 66.0 vs. 151.1 ± 66.4). The testing time for the CFM-100, however, was less than the FM-100 (10.3 ± 2.8 min vs. 12.9 ± 2.9 min, 7.8 ± 2.5 min vs. 12.6 ± 3.3 min). The correlation coefficient R was 0.93 and Cohen's kappa was 0.89 for the two methods. Further analyses defined 34 as the cutoff value to differentiate excellent from fair color discrimination (sensitivity 58.0%, specificity 94.7%) and 101 as the cutoff value to judge fair vs. poor (sensitivity and specificity both 98.8%) for the CFM-100. The cut-off value was 72 for distinguishing normal from defective color vision (sensitivity 96.6%, specificity 98.7%) and 110 was for distinguishing color weakness from color blindness (sensitivity 97.6%, specificity 97.7%) for the CFM-100.CONCLUSIONS: The CFM-100 is an effective method for the diagnosis of dyschromatopsia with high sensitivity in screening airline pilots.Zhang Y, Ma J, Cheng S, Hu W. A computer-based Farnsworth-Munsell 100-Hue (CFM-100) test in pilots' medical assessments. Aerosp Med Hum Perform. 2022; 93(4):362-367.


Subject(s)
Color Vision Defects , Color Vision , Color Perception Tests/methods , Color Vision Defects/diagnosis , Computers , Humans , Sensitivity and Specificity
13.
Int J Occup Saf Ergon ; 28(4): 2411-2418, 2022 Dec.
Article in English | MEDLINE | ID: mdl-34704536

ABSTRACT

Objective. Pilots are commonly exposed to some sources of emotional and cognitive stressors, especially for flight cadets, which have an important influence on flight safety. The present study aimed to study the relationship between emotional trait factors, emotional state, mental workload and simulated flight performance (SFP) under an acute psychological stress situation. Methods. Fifty-five undergraduates were included in the study. The Wong and Law emotional intelligence scale (WLEIS), state-trait anxiety inventory (STAI), stress rating questionnaire (SRQ) and National Aeronautics and Space Administration task load index (NASA-TLX) were used as data collection tools. Nine hours of simulated flight training were conducted in a simulator of the Type-6 Primary Trainer (Aviation University Air Force, China). The simulated flight assessment was taken as the acute psychological stressor. Results. SFP was negatively correlated with tensity and state anxiety. Emotional intelligence (EI) indirectly affected the SFP mediated by emotional state and workload, and emotional state had a mediating effect on the relationship between trait anxiety and SFP. Conclusions. The findings indicated that emotional trait factors (EI and trait anxiety) may indirectly affect SFP under an acute psychological stress situation, and emotional state (tensity and state anxiety) and mental workload played an important mediating role.


Subject(s)
Aviation , Humans , Stress, Psychological/psychology , Emotional Intelligence , Workload/psychology , Anxiety
14.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 52(6): 981-986, 2021 Nov.
Article in Chinese | MEDLINE | ID: mdl-34841765

ABSTRACT

OBJECTIVE: To explore the health risks of the interactive effects between PM2.5 and ozone on cardiovascular mortality in Chengdu. METHODS: Daily data on the mortality of cardiovascular diseases, including data for both men and women, during 2014-2016 were collected. The meteorological data, the daily average of particulate matter with aerodynamic diameter less than 2.5 micrometers (PM2.5), and the daily ozone 8 h maximum concentration (O 3 8-h max) in Chengdu of the same period were also collected. Generalized Additive Models (GAMs) were adopted to explore the respective adverse health effects of PM2.5 and O 3 8-h max and the synergistic effects between PM2.5 and O 3 8-h max on the mortality of cardiovascular diseases in the city. RESULTS: The highest health risks of PM2.5 and O 3 8-h max for mortality of cardiovascular diseases were found to be the strongest for the cumulative effect of the lag of one day (lag01). For every 10 µg/m 3 increment in the mass concentration of PM2.5 (lag01), the associated increase in risks for total, male, and female cardiovascular mortalities was 0.35%, 0.26% and 0.38%, respectively. For every 10 µg/m 3 increment in the mass concentration of O 3 8-h max (lag01), the associated increase in risks for total, male, and female cardiovascular mortalities was 0.66%, 0.43%, and 1.05%, respectively. The total, male, and female cardiovascular mortalities all reached their maximum values when high concentration of PM2.5 coexisted with high concentrations of O 3 8-h max. CONCLUSION: There was a synergistic amplification effect between high concentrations of PM2.5 and high concentrations of O 3 8-h max on cardiovascular mortality.


Subject(s)
Air Pollutants , Cardiovascular Diseases , Ozone , Air Pollutants/adverse effects , Cardiovascular Diseases/etiology , China/epidemiology , Environmental Exposure/adverse effects , Female , Humans , Male , Ozone/adverse effects , Ozone/analysis , Particulate Matter/adverse effects
15.
Aerosp Med Hum Perform ; 92(8): 627-632, 2021 Aug 01.
Article in English | MEDLINE | ID: mdl-34503615

ABSTRACT

AbstractBACKGROUND: Based on posturography parameters during sleep deprivation (SD), a mental fatigue index (MFI) was constructed for healthy male cadets.METHODS: There were 37 young male subjects who volunteered for two successive days of SD. Their posturography balance, profile of mood status (POMS), and heart rate variability (HRV) were measured at four different times (10:00 and 22:00 of day 1, 10:00 and 22:00 of day 2). According to the methods used in our previous research, similar MFIs based on posturography parameters were computed. Then, correlations of MFIs with POMS scores and HRV values were evaluated by linear and nonlinear methods including quadratic, S-curve, growth, and exponential analyses.RESULTS: MFI continued to increase during SD and MFI as the independent variable had quadratic relationships with fluster (R² 0.057), depression (R² 0.067), and anger (R² 0.05) scores of POMS. A linear correlation was found between MFI and the depression score (R² 0.045) and MFI correlated linearly (R² 0.029) and nonlinearly (R² 0.03) with heart rate. Similarly, MFI reflected changes in the time and frequency domain parameters of HRV, with linear (R²range: 0.0290.082) or nonlinear (R²range: 0.0300.082) relationships.DISCUSSION: The increase of MFI was linked with amplification of personal negative moods and an imbalance of autonomic nervous system activity. The findings suggest that MFI might be a potential indicator of mental fatigue and provide a method to prevent driving fatigue and human errors.Cheng S, Yang J, Su M, Sun J, Xiong K, Ma J, Hu W. Postural stability change under sleep deprivation and mental fatigue status. Aerosp Med Hum Perform. 2021; 92(8):627632.


Subject(s)
Mental Fatigue , Sleep Deprivation , Affect , Autonomic Nervous System , Heart Rate , Humans , Male
16.
Front Hum Neurosci ; 15: 730011, 2021.
Article in English | MEDLINE | ID: mdl-35153697

ABSTRACT

BACKGROUND AND OBJECTIVE: There is a paucity of research that has explored "False Alarm" mechanisms. In order to remedy this deficiency in knowledge, the present study used event-related potential (ERP) technology to reveal the mechanisms underlying False Alarm in response to fear stimuli. METHODS: This study selected snakes as experimental materials and the "oddball paradigm" was used to simulate the conditions of False Alarm. The mechanism underlying False Alarm was revealed by comparing cognitive processing similarities and differences between real snakes and toy snakes. RESULTS: Event-related potential findings demonstrated that there was no significant difference between N1 and P2 components induced by real and toy snakes in the early processing stage. Compared with toy snakes, real snakes induced smaller N2 amplitude, larger P3 amplitude, and a shorter P3 latency at the late processing stage. The results of brain topographic mapping analysis showed that the brain regions activated by a real or toy snake were basically the same within the time windows of 110-150 and 220-270 ms, respectively. In the time window of 300-360 and 400-500 ms, the degree of brain regions activation with a real snake was significantly greater than that induced by a toy snake. CONCLUSION: False Alarm is caused by the brain's inability to distinguish, in the early stage of cognitive processing, stimulus objects with similar appearances. When the brain is able to distinguish the differences between different stimulus objects in the late stage of cognitive processing, False Alarm disappears.

17.
Environ Res ; 195: 110318, 2021 04.
Article in English | MEDLINE | ID: mdl-33058812

ABSTRACT

It is known that air pollution is harmful to creatures, though until now most of the human thermal comfort indices that existed were calculated only with meteorological conditions. Therefore, a new index - meteorology and environment comfort (MEC) - was given out in this paper that considers both meteorology and air pollution conditions and presents the comprehensive and synergistic effects of meteorological and air pollution. The meteorology and air pollution data were used to establish the influence function of the five air pollutants (PM2.5, PM10, O3, NO2, and SO2) according to Fechner's law; then, we calculated the somatosensory temperature (ST, a class of human thermal comfort indices) and MEC values of five typical cities (Beijing, Xining, Nanjing, Kunming, and Guangzhou). The results showed average improvements of five cities on MEC as a new comprehensive human comfort index to new ST. In spring, the MEC comfort proportion fell by 29.25%. Besides, the extreme heat discomfort ratio in Nanjing and Kunming has increased over 20%. In summer, the comfort proportion fell 12.54%; the extreme heat discomfort proportion of Beijing increased 37.86% and Kunming increased 24.09%. Air pollution significantly raised discomfort stress in Beijing. In fall, the comfort proportion fell by 20.87%; and the extreme heat discomfort of Nanjing increased 23.67% caused by poor air quality. About winter, the comfort ratio decreased 12.72%, and the cold discomfort proportion of Nanjing increased 30.30%, signifying awful air quality in winter. Air pollution levels significantly affect the comfort levels in all seasons, which is more evident with good weather patterns. MEC can offer early warnings of extreme weather events and provide a basis for the better prevention and control of air pollution to protect human health basing on the predictions of meteorological and environmental impact factors.


Subject(s)
Air Pollutants , Air Pollution , Air Pollutants/analysis , Air Pollution/analysis , Beijing , China , Cities , Environmental Monitoring , Humans , Particulate Matter/analysis , Seasons
18.
J Physiol ; 598(15): 3173-3186, 2020 08.
Article in English | MEDLINE | ID: mdl-32415785

ABSTRACT

KEY POINTS: Rapid alterations of gravitational stress during high-performance aircraft push-pull manoeuvres induce dramatic shifts in volume and pressure within the circulation system, which may result in loss of consciousness due to the rapid and significant reduction in cerebral perfusion. There are still no specific and effective countermeasures so far. We found that lower body negative pressure (LBNP), applied prior to and during -Gz and released at the subsequent transition to +Gz, could effectively counteract gravitational haemodynamic stress induced by a simulated push-pull manoeuvre and improve cerebral diastolic perfusion in human subjects. We developed a LBNP strategy that effectively protects cerebral perfusion at rapid -Gz to +Gz transitions via improving cerebral blood flow and blood pressure during push-pull manoeuvres and highlight the importance of the timing of the intervention. Our findings provide a systemic link of integrated responses between the peripheral and cerebral haemodynamic changes during push-pull manoeuvres. ABSTRACT: The acute negative (-Gz) to positive (+Gz) gravity stress during high-performance aircraft push-pull manoeuvres dramatically reduces transient cerebral perfusion, which may lead to loss of vision or even consciousness. The aim of this study was to explore a specific and effective counteractive strategy. Twenty-three healthy young male volunteers (age 21 ± 1 year) were subjected to tilting-simulated push-pull manoeuvres. Lower body negative pressure (LBNP) of -40 mmHg was applied prior to and during -Gz stress (-0.50 or -0.87 Gz) and released at the subsequent transition to +1.00 Gz stress. Beat-to-beat cerebral and systemic haemodynamics were continuously recorded during the simulated push-pull manoeuvre in LBNP bouts and corresponding control bouts. During the rapid gravitational transition from -Gz to +Gz, the mean cerebral blood flow velocity decreased significantly in control bouts, while it increased in LBNP bouts (control vs. LBNP bouts, -6.6 ± 4.6 vs. 5.1 ± 6.8 cm s-1 for -0.50 Gz, and -7.4 ± 4.8 vs. 3.4 ± 4.6 cm s-1 for -0.87 Gz, P < 0.01), which was attributed mainly to the elevation of diastolic flow. The LBNP bouts showed much smaller reduction of mean arterial blood pressure at the brain level than control bouts (control bouts vs. LBNP bouts, -38 ± 12 vs. -23 ± 10 mmHg for -0.50 to +1.00 Gz, and -62 ± 16 vs. -43 ± 11 mmHg for -0.87 to +1.00 Gz, P < 0.01). LBNP applied at -Gz and released at subsequent +Gz had biphasic counteractive effects against the gravitational responses to the push-pull manoeuvre. These data demonstrate that this LBNP strategy could effectively protect cerebral perfusion with dominant improvement of diastolic flow during push-pull manoeuvres.


Subject(s)
Aviation , Lower Body Negative Pressure , Adult , Blood Pressure , Brain , Cerebrovascular Circulation , Gravitation , Humans , Male , Perfusion , Young Adult
19.
Int J Occup Saf Ergon ; 26(1): 37-45, 2020 Mar.
Article in English | MEDLINE | ID: mdl-29570043

ABSTRACT

Objective. To assess the fatigue risk is an important challenge in improving flight safety in the aviation industry. The aim of this study was to develop a comprehensive fatigue risk management indicators system and a fatigue questionnaire for Chinese civil aviation pilots. Methods. Participants included 74 civil aviation pilots (all males). They finished the questionnaire in 20 min before a flight mission. Estimation of internal consistency with Cronbach's α and Student's t test as well as Pearson's correlation analysis were the main statistical methods. Results. The results revealed that the fatigue questionnaire had acceptable internal consistency reliability and construct validity; there were significant differences in fatigue scores between international and domestic flight pilots. Also, some international flight pilots, who had taken medications as a sleep aid, had worse sleep quality than those who had not. Long-endurance flights across time zones caused significant differences in circadian rhythm. Conclusions. The fatigue questionnaire can be used to measure Chinese civil aviation pilots' fatigue, which provides a reference for a fatigue risk management system for civil aviation pilots.


Subject(s)
Aviation , Fatigue/diagnosis , Pilots , Adult , China , Humans , Male , Middle Aged , Risk Management , Sleep Deprivation , Surveys and Questionnaires
20.
Med Sci Monit ; 25: 8120-8130, 2019 Oct 30.
Article in English | MEDLINE | ID: mdl-31662580

ABSTRACT

BACKGROUND Our previous study found a novel fluid combination with better resuscitation effects under hypotensive condition at the early stage of uncontrolled hemorrhagic shock (UHS). However, the optimal recovery concentration of hypertonic saline in this fluid combination remains unknown. This experiment aimed to explore the optimal concentration. MATERIAL AND METHODS New Zealand white rabbits (n=40) were randomly divided into 5 groups, including a sham-operated group (SO), a shock non-treated group (SNT), a normal saline group (NS), and hypertonic saline groups (4.5% and 7.5%). We established an UHS model and administered various fluid combinations (dose-related sodium chloride solution+crystal-colloidal solution) to the groups followed by monitoring indexes of hemodynamic and renal function, measuring infusion volume and blood loss, and analyzing pathological morphology by hematoxylin and eosin staining. RESULTS The hypertonic saline groups showed more stable hemodynamic indexes, reduced blood loss, fewer required infusions, and milder decreases in renal function than those of control groups (SNT and NS groups), and exhibited fewer pathological changes in the heart, lung, kidney, and liver. All indexes in the 4.5% and 7.5% groups were better than those of the NS group, and the hemodynamic indexes in the 7.5% group were more stable than those of the 4.5% group (P<0.05), with reduced blood loss and infusion volume and a milder decrease in renal function. CONCLUSIONS The novel fluid combination with 7.5% hypertonic saline group had a better recovery effect at the early stage of UHS before hemostasis compared to that of the 4.5% hypertonic saline group. This result may provide guidance for clinical fluid resuscitation.


Subject(s)
Saline Solution, Hypertonic/therapeutic use , Shock, Hemorrhagic/drug therapy , Sodium Chloride/therapeutic use , Animals , Blood Pressure , Fluid Therapy/methods , Hemodynamics , Hypotension , Male , Models, Animal , Rabbits , Resuscitation
SELECTION OF CITATIONS
SEARCH DETAIL
...